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1. Introduction

In the past two years, we have studied the efficiency of memory

utilization and data compression in multiprocessors and distributed

systems. The work we have done can be summarized as follows: (1)

design of an interleaved memory; (2) survey of data compression schemes

and identification of future research directions.

The design of primary memory should consider (1) bandwidth; (2)

response time; (3) size; (4) cost. The performance of final memory

system can be evaluated by the above four parameters as evaluation

criteria. From the study of memory access sequence of a pipelined

processor, the access pattern is that instruction fetches are made in

a sequence interlaced with operand accesses. The performance of the

memory system may be improved by separating memory modules into two

sets, one for instructions and one for data. In Section 2.7, the

effects on memory performance due to separation and mergence of

instruction and data modules are compared. We have studied two

organizations of interleaved memories. The control of the memory

system is the intelligent scheduler. The scheduler, using a

scheduling algorithm, decides at the beginning of each memory sub-

cycle whether to initiate a memory module and if so which module to

initiate. The selection of which module to initiate is determined by

the information about the requests in the associative buffers and by

the knowledge about the status of the modules. Three scheduling

algorithms are investigated in the design.

Data compression is any reversible encoding technique that

produces a measurable reduction in the size of the data encoded.
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By reversible, it is meant that the original data is recoverable fromi

the compressed form. Due to the growth in the size of information

processing, it is necessary to develop good data compression techniques

which reduce the size of the stored information and the amount of

internode comunications.

We have surveyed data compression techniques and identify the

problems for future research. A multi-leaved compression scheme is

proposed so that data is compressed through a set of cascaded stages.

This report is divided into four sections. Section 2 presents the

design of interleaved memory. Section 3 concentrates on data

compression schemes. Lastly, Section 4 gives a conclusion of the

report.

2. The Restricted Model - an Optial Algorithm, for Scheduling

equests on an interleaved Mmry System
2.1 Requirements for the Design of a Primary Memory

In a top-down design, the requirements and the attributes must

first be identified before the system can be designed. Requirements

are the constraints which the system must satisfy and they reflect the

environmnent as well as the objectives of the system. Attributes, on

the other hand, specify either options or evaluation criteria for

qualitative comparisons of competitive systems that meet the system

requirements. Attributes may be used to evaluate the tradeoffs in

competing architectures and to obtain a feeling for the "goodness" of

the architecture in realizing the system. The requirements for the

design of a primary memory are:

(1) Bandwidth

The Bandwidth represents the average throughput of the memory
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system and is given in terms of bits returned/unit time. In a parallel

memory system, the bandwidth is the sum of the bandwidths of all the

modules (Bandwidth = I (word length of module k)*(average
modLe k

utilization of module k)/(cycle time of module k) where the average

utilization of a module is the average fraction of time the module is

busy. For the case of identical modules, the bandwidth can be written

as:

[numbr .of word l, raverage Q]
Bandwidth = [n[e * length * ilzaton

(speed of module)

constant * [average number of1
Bandwidth - [ busy modules

(memory cycle time) (2.1)

where the constant in Eq. 4.1 has a unit of (bits * memory cycle/unit

time). The model of interleaved memories presented here assumes that

all the modules are Identical and the word lengths of each module are

kept constant. The objective of maximizing the bandwidth is therefore

equivalent to maximizing the average utilization of the modules.

(2) Response time

The response time is the delay between the time a request is

accepted by the primary memory and the time the request is serviced,

assuming that the datum resides in the primary memory. This is also

called the waiting time of the requests.

(3) Size

This is the required memory size or capacity.

(4) Cost

This is the maximum allowable cost of the resultant design which

satisfies the above requirements.
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The design of the memory must satisfy the above requirements. Moreover,

the performance of the final system can be evaluated by using these

parameters as evaluation criteria.

2.2 Characteristics of the Access Sequence of a Pipelined Processor

In this section, we describe the characteristics of the access

sequence of a pipelined processor. A pipelined organization in the

most general sense, instead of specially structured pipelined computers

with different arithmetic units (e.g., CRAY I), applications (e.g.,

vector processing), additional memory support (e.g., cache) and inter-

connections (e.g., ILLIAC IV), is assumed. The processor is further

assumed to be executing directly from the main memory. The scheduling
algorithms developed are general enough to be applicable to the

interleaved memories of all the specially structured pipelined computers.

However, the exact performance is not found for each type of machine.

A memory access sequence generated by a pipelined process has

Class D dependencies as classified by Chang et. al. [CHA77]. A

dependence is a logical relationship between two addresses such that

the second address cannot be accessed (written or read) until the first

has been accessed. Class D dependency is characterized by a machine

with instruction level multiprogrmming (from a large number of jobs),

or a machine with sufficient lookahead or queueing hardware to allow

dependencies to be bypassed. However, there still exist cases where

the effects of dependencies cannot be eliminated. Anderson et. al. have

identified three main sources of concurrency limitations which tend to

reduce the performance of the pipe [AND67]. These are:

I'4
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(a) Register interlock - When the current instruction needs a

register modified by a previous instruction, the current instruction

cannot be decoded until the previous instruction has finished.

(b) Branching - When a jump or a branch on condition instruction

is encountered, further operations in the pipe cease until the target

instruction has returned from the memory. Conditional branching poses

an additional delay because the branch decision depends on the outcome

of arithmetic operations in the execution units.

(c) Interrupts - When an interrupt occurs in the pipe, it is

necessary to sequentialize the execution of instructions in the pipe in

order to determine the exact source of the interrupt. This sequential-

ism in execution would degrade the performance of the pipe.

Various methods have been introduced to solve these dependency problems

[TOM67J. For example, register interlocks can be solved by using

forwarding; the sequentialism due to interrupts can be eliminated by

using imprecise interrupts as in IBM 360/91. The most predominant

effect on the performance of the memory is due to branching. When a

branch or a conditional branch instruction is encountered, request supply

to the memory discontinues until the condition code has been set and the

target instruction has returned from the memory. The utilization of the

memory therefore decreases. The effects on the memory performance due

to branching dependencies are studied In section 2.8.

In addition to the effects due to address dependencies, the order

in which instructions and data are requested also affects the memory

performance. For a pipelined processor, the request stream is a

sequence of instruction-operand fetch pairs. However, not every

instruction involves an operand fetch and if the bus is wide enough, two
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or more instructions can he fetched in one access. A notable

characteristic in this access pattern is that instruction fetches are

made in a sequence interlaced with operand accesses. The performance of

the memory system may be improved by separating the memory modules into

two sets, one for instructions and one for data. In section 2.7, the

effects on memory performance due to separation and mergence of

instruction and data modules are compared.

2.3 Previous Work on the Study of Interleaved Memories

One of the early successful implementations of interleaved

* memories is in the IBM 360/91 [B0167). In this computer, the storage

system is made up of an interleaved set of memory modules and the degree

of interleaving equals the number of memory modules. The memory can

service a string of sequential requests by starting, or selecting, a

storage unit every cycle until all are busy. In effect, the storage

cycles are all staggered (see Fig. 2.2). By using a set of buffers

called the request stack, conflicting requests which access the sane

module can be resolved by allowing only one of these requests, to access

the module and storing the rest in the request stack to be issued in

later cycles. Simulation results were shown for the average access time

and the bandwidth with various degrees of interleaving.

The earliest attempt to model the performace of interleaved

memories was done by Hellerman [HEL67). By assuming a saturated

request queue (a queue in which requests are never exhausted) with

* random requests, and if no provision is made for the queueing of the

requests on busy modules, the request queue is scanned until a repeated

request is found. This constitutes a collision. Heller'nan's results

show that with m memory modul es, the average number of requests scanned
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before a collision is approximately m0 "56 for m between 1 and 45. This

is taken to be an indication of bandwidth. Knuth and Rao [KNU75] show

an alternate exact way to calculate the bandwidth. However, both of

these results are pessimistic because they do not allow the queueing of

conflicting requests to the same module and the randomness assumption

is not tenable in real programs.

Burnett et. al. have developed a number of models on parallel

memories. In two of these models [BUR7O, BUR73], they assume that the

modules operate synchronously (all modules start and end their cycles

simultaneously) and a scanner scans a saturated request queue and admits

new requests to service until it attempts to assign a request to a busy

module. In two other models, [BUR75], they further assume that a

set of blockage buffers is present so that requests made to a busy

module can be stored and issued in later cycles. The scanner continues

to scan the request queue until all the modules have been allocated or

all the buffers are occupied. In effect, the maximum size of the

request queue inspected by the scanner never exceeds b+m where b is the

number of buffers and m is the number of memory modules. They have

also studied a request model similar to Strecker's model [STR7O] by

assuming a probability a for the succeeding request to request the next

module in sequence and a probability of (l-a)/(m-l) to request any

other module. They have developed two algorithms that modified the

request pattern in order to increase the bandwidth. The first one is

called the Instruction-Data Cycle Structure, which distinguishes the

request queues into sub-queues, the instruction queue and the data

queue. These two sub-queues are inspected in alternate memory cycles.

They found that there are improvements from -4% to 12% in bandwidth
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(the number of modules varies from 8 to 16) over a model with four

blockage buffers and a single queue IBUR75J. The second algorithm, the

Group Request Structure, separates a memory cycle into two sub-cycles;

the first sub-cycle is used for servicing the instruction queue, and

the second sub-cycle is used for servicing the data queue. They found

that there are 8% to 16% improvements over the same Instruction-Data

Cycle Structure algorithm and found that the theoretical predictions of

Burnett and Coffm~an fit well with the simulation results for the fetch-

ing of instructions, but their predictions do not fit well with the

simulation results for data requests which are more random than

instruction requests and are difficult to model accurately.

Many other researchers have studied models of parallel

memories. These include Flores [ FLO64] Skinner and Asher [SK169]

Ravi [ RAV72)], Sastry and Kain [ SAS75 ], Briggs and Davidson

iBR177] Chang, Kuck and Lawrie [ CHA77] Smith [ SM177]

and Hoagendoorn [ H0077]. These studies are directed toward

multi-processor systems and we will not describe them here.

In the remainder of this section, the deficiencies found in the

previous models are summnarized.

(1) All the previous models assume that the memories operate

synchronously. As Burnett and Coffman pointed out, simultaneous memory

operations offer more opportunity to take advantage of program behavior

in a particular memory system [BUR75]. However, with synchronous

operations, there is the problem of returning the results of the

accesses from the memory. Since the results from each module are

available simultaneously, extra data paths or queues are needed to

return these data to the processor. Further, a pipelined processor
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usually makes requests in sequences rather than in batches. Therefore

it is desirable to study a model in which the memory modules operate

out of phase. By out of phase, we mean either a) the initiations of

the modules are asynchronous or b) the initiations of the modules are

timed by a clock and during a clock interval, at most one module can be

initiated. Because the operations of asynchronous modules are much more

difficult to control, only case (b) is considered in this design.

(2) Very few studies have been made to minimize the waiting time

of a request to the memory. Flores [FL064] has made a quantitative

study relating the waiting time factor to the memory cycle time, the

input/output time and the worst case execution time for different

numbers of memory banks. However, his studies were directed toward

the effect of interference from the input/output units and there was no

queueing of requests. In other models, a saturated request queue is

assumed, and the effects of waiting time are not considered. When the

queue size is finite, it is possible to develop algorithms which

optimize for the amount of waiting time in the queue, e.g., minimize the

average waiting time of requests in the queue. In this section, the

amount of queued requests is assumed to be finite so that the effects of

waiting time can be studied.

(3) None of the previous work considers the effects of dependencies

on the memory performance. Request supply to the memory ceases when a

dependent instruction is executed until the dependency has been resolved.

The effects of dependencies are difficult to determine because they vary

strongly with the configuration of the pipe and the strategies employed

in the pipe to resolve them. Request rate to the memory may also de-

crease for other reasons. For example, in the M 360/91, there is a
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small amount of instruction buffers in the CPU which serve as another

level of the memory hierarchy. When a small loop occurs such that all

the instructions of the loop fit in the instruction buffers, instruction

accesses to the memory stop until execution of the loop is finished.

Other machines may heve different approaches. However, the evaluation

of memory performance for a specific machine is too restrictive. We

take an approach which first evaluates the performance for the general

case of an interleaved memory with a saturated, non-dependent request

stream. The degradation in performance due to dependence in the requests

is then estimated subsequently.

2.4 The Organization of Primary Memory for a Pipelined Processor

We present in this section two different implementation alternat-

ives of interleaved memories (Organization I and Organization II). The

two organizations differ in the configurations of the request buffers.

In Organization I, a single set of request buffers is assumed to be

shared by all the modules and in Organization II, individual request

buffers exist for each module. The general assumptions made are as

follows:

(1) The request rate from the processor is assumed to be high

enough so that any empty buffer in the memory system is filled up by

an incoming request immediately. Buffers are assumed to exist at the

processor end so that any additional requests generated by the processor

can be queued there. The requests that can be served by the modules

are those that exist in the buffers only. This assumption is made

because we want to get an upper bound on the performance of the memory.

In a practical system, the memory is usually the bottleneck and our

assumption is therefore valid.



(2) Each request is assumed to be an integer from 0 to rn-1, which

is the module it requests, and is obtained as the residue of dividing

the address by m.

* (3) The service time of each module (the read time or the write

time) for a request is assumed to be constant. This is a good model

for semiconductor memories. We also assume that a memory module, once

initiated to start a memory cycle, is not available until the end of the

cycle.

(4) A memory cycle time is the time it takes for a memory module

to service a request. Each memory cycle is assumed to consist of mn

equally spaced memory sub-cycles. rt is further assumed that exactly

one module can be initiated to service a request at the beginning of a

memory sub-cycle and it takes m sub-cycles (I memory cycle) to service

the request for all the modules, i.e., homogeneous service times. With

this assumption, the problem of multiple data paths is resolved because

at most one module finishes in each sub-cycle and the system is never

confronted with returning results fromn more than one module simultane-

ously. The modules are therefore clocked by the memory sub-cycles.

In Organization I (Fig. 2.1), there are mn memory modules; a single

set of b+l associative buffers, "To., B1 B21 ... b; and an intelligent

scheduler which schedules a memory module to start a memory cycle. The

modules operate out of phase in a fashion called staggered cycles. One

example of a staggered cycle is shown~ In Fig. 2.2. The set of b+1

associative buffers are used to store incoming requests. A request

queued on a specif ic module can be retirleved in one associative search

operation. Whenever a request is taken out from a buffer, all the

requests behind it are pushed one location up so that 5.S. is empty. The

12



buffer ST. has an additional function, namely, to receive requests from

the bus. Due to our assumption of high request rate, STi is filled

immediately whenever it is empty. The queueing discipline for the

requests in the buffers directed towards the same module is essentially

First-In-First-Out (FIFO). Other queueing disciplines are not studied

because only uni-processor systems are considered in this design.

The center of the control in the memory system is the intelligent

scheduler. The scheduler, using a scheduling algorithm, decides at the

beginning of each memory sub-cycle whether to initiate a memory module

and if so which module to initiate. The selection of which module to

initiate is determined by the information about the requests in the

associative buffers and by the knowledge about the status of the modules

(free or busy). Three scheduling algorithms are investigated in this

- design.

(1) Algorithm 2.1 Round-Robin (RR)

All the modules are initiated in a round-robin fashion regardless

of whether a request is queued on the module. The scheduler does not

make use of any information about the status of the system. The

implementation of this algorithm is very simple and the scheduler only

has to know the current module initiated. In Fig. ,the Gantt

Chart for the operation of a 4-way interleaved memory with RR scheduling

algorithm is shown. This is the scheduling algorithm that is

implemented in more interleaved memory systems today.

(C2) Algorithm 2.2 First-Free-First (FFF)

In this algorithm, only the information about the status of the

modules (free or busy) is utilized by the scheduler. There is a FIFO

13



list of free modules. At the beginning of a memory sub-cycle, the

scheduler puts a busy module to the end of the free list if this module

finishes its cycle. It will then initiate the module at the head of

the free list if there are any requests queued on it, otherwise the

module at the head is appended to the tail of the free list and noj other modules are checked in this cycle. The scheduler may also check

all the subsequent modules in the free list, but the time for this is

proportional to the number of modules and is not feasible when this

number is large.

(3) Algorithm 2.3 Maximum-Work-Free-Module-First (I4WR4F)

In this algorithm, both the information about the status of the

modules and the requests in the buffers are utilized by the scheduler.

There is a dynamic list of free modules. Conceptually, at the beginning

of a memory sub-cycle, the buffers are checked associatively to see if

any requests are queued on the free modules. If there is none, no

module is initiated. If at least one exists, an associative search is

made on the buffers and the module with the maximum number of requests

queued on it is initiated. In case of ties, only the first one is

* initiated (fig. 2.3a). The implementation of this algorithm can be done

by using an additional associative memory of size m in the scheduler

(Fig. 2.3b). Each word in this associative memory can function as a

counter and is used to indicate the number of requests queued on the

corresponding module. The corresponding word is incremented/decremented

when a request enters/leaves the request buffers. The free module with

the maximum number of requests can be obtained by performing a maximum

search on those words in this associative memory corresponding to the
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free modules, e.g., [RAI47Ba) (see the associative memor-y design in

Chapter 5). The maximum search algorithm shown in [RAM7Ba) is parallel

by word and serial by bit and the time to perform a maximum search is

proportional to the nuber of bits in the memory. The speed of this

algorithm is therefore proportional to rlog2bl.

In addition to tht. overhead related to the execution of the

scheduling algorithm, there is also the overhead of selecting the

request from the associative buffers and sending it to the memory

* module. This overhead consists of matching the selected module number

- I against all the requests in the buffers and selecting the first request

if multiple responses occur in the match. Using a bit-serial word-

parallel equality matching algorithm, e.g. [F0S68], this overhead is

proportional to F logym. In general, the overheads associated with the

three scheduling algorithms are very small, and the selection of a

module and the corresponding request to be initiated in the next sub-

cycle can be overlapped with the current sub-cycle.

At the end of each memory sub-cycle, at most one request is

serviced. The result is sent back to the processor. The necessary

queue for storing these results is excluded from the memory model.

The requests of the system come into the memory in a specific

* pattern. Two types of access patterns are considered in this design:

(1) Random accesses with no address dependency. All the addresses

have no correlation and are independent of each other. This can be used

to model the request stream from computer systems with instruction level

mujltiprogramming or multi-processor systems where the number of

processors is larger than the number of modules.
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(2) Accesses from the execution trace of a monoprogranined pipe-
lined computer:

The addresses in the execution traces are correlated and they

represent a similar addressing behavior when the actual program is

executed on a pipelined processor. We have used execution traces from

a pipelined processor, representing large scientific applications, the

CDC 7600, in this study.

Organization II is similar to Organization I except that separate

sets of buffers exist for each module (Fig. 2.4). Requests from the

processor are continuously moved into the buffers of each module via 3T.

until a request in 57. is directed toward a module whose buffers areI already full. The request in B7. is blocked, and as a result, further

requests are blocked from entering the er.icin the module rqet

responsible for this blocking has finished sriigiscretrqet

one request from its buffers is serviced which results in an empty

buffer. The blocking request in ST. is moved into this empty buffer.

Because of the independent queues, one or more requests can then be

accepted to the memory system until the previous blocking situation

occurs with one of the modules. When b-0, there is only one buffer,

IST, in the system and this is exactly the same as Organization I when

b-O. The buffers used in this organization are simpler than those of

Organization I. Associative search capabilities are not necessary for

these buffers. The implementation of the scheduler is similar to that

~1 s of Organization 1. The advantage with this system is that the request
buffers are simple shift registers and therefore are cheaper. However,

in order for this organization to operate at full capacity, more than

one request may have to be moved across the bus into the menory in a
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memory sub-cycle. As we recall, we assumed that a pipelined processor

generates in the order of one request every memory sub-cycle; therefore,

the blocking situation may not always occur and the buffers are under-

utilized. Further, it is necessary to build a faster bus so that

multiple requests can be moved across the bus in a memory sub-cycle.

We can assume that sufficient requests are queued in the processor so

that the need of moving more than one request into the memory system

during a sub-cycle can be satisfied. An alternative is to allow a

maximum of one request to be accepted in every sub-cycle. This results

in a degraded performance for Organization II because the system is not

operating with the maximum request rate.

Since the two organizations discussed are operating in steady state

and the systems discussed are balanced, the average arrival rate and

the average waiting time are related by Little's Formula.

Let

e. = utilization of the buffers 810...,B

(=I for Organization I)

eT. = utilization of buffer ST

* (=1 for both organizations)

B number of buffers in 81,...,96

(-b for Organication I; -m*b for Organization II)

Um,b = expected utilization of the modules

Wm,b = expected waiting cycles of the requests

M - expected number in the system

A = expected arrival rate

: W - expected vaiting time of the requests

17



Then

M (es*B +1) + %, bM (4.2)

XUM b (4.3)

W wm b (4.4)

and they satisfy Little's Formula,

M )IL'W

Eq. (4.3) is true because in a balanced system the expected arrival rate

equals the expected service rate. The physical importance of Little's

Formula lies in the fact that the average utilization and the average

number of waiting cycles are related. Once one of them is obtained,

the other can be calculated easily. Further, it also shows that
Organizations I and II are equivalent as far as the average behavior

is concerned. The only difference lies in the buffer utilization which

is less than I in Organization 11 whereas the buffers are fully utilized

in Organization 1. In the next section, we present our evaluations for

Organization I only because the two organizations are equivalent and

the results are directly applicable. It is shown that the MW*FMF

algorithmn minimizes the average completion time of the requests. This

result only demonstrates that the MIWFMF algorithmi is superior, but the

exact throughput values of the system cannot be obtained analytically.

The techniques that are used to evaluate the performance of these two4 j organizations are embedded Markov analysis with random requests and

simulations with random requests and execution traces and they are

shown in Section 2.6.
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2.5 Optimality of the MWFMF Scheduling Algorithmi

In proving the optimality, it is assumed that the requests in the

request queue are independent, randomly generated and of a finite size.

The size of the associative buffers may be greater than, equal to, or

less than the number of requests in the request queue. In a pipelined

processor, memory requests can be generated continuously until a

dependency occurs. At this point, the request stream is discontinued

until the dependency has been resolved. Because of the high request

rate assumption, the requests generated between two dependencies can be

assumed to exist in the reqest queue after the first dependency has

been resolved. However, in a practical implementation, the pipelined

processor is able to look ahead only a fixed amount of instructions and

this is modeled by a fixed and finite amount of associative buffers in

the system (which may be greater than, less than or equal to the size

of the request queue). The intelligent scheduler is allowed to examine

the associative buffers in making the scheduling decision. The

objective of the scheduling algoritm iIs to complete the service of the

requests in the request queue as fas as possible so that the throughput

of the memory is maximized. The symbols used in the following theorems

are:

b -number of associative buffers - 1;

m -number of memory modules;

N - total number of requests that have to be serviced between two

dependencies;

state of the memory system,
where

f a state of module j;
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,= number of requests queued on module j in the buffers;

j
I t=b + 1and t >0 1,2..,

0O if modut j, i,6 6ee
" in O<n<m if modute j i6 buy

In the case that module j is busy, n is the number of cycles

that module j has serviced its current request. The number of

cycles remaining before the completion of service for the

current request is (m-n) mod m.

k = variable used in the induction proof indicating the numb,,r of

remaining requests to be serviced (not including those in the

associative buffers);

Cmax{/1'ii(2'/2}''''' (Zm'm) k = maximum completion time for the

state;

ECmax(ZiZ1)'( 2'i2)'•'' (tm'm)}k = expected maximum completion time

for the state.

Before the main theorem can be stated, the following three lemmas

must first be proved. Lemma 2.1 establishes the need for executing the

MWFMF scheduling algorithm at the beginning of each sub-cycle. Lemma

2.2 establishes a basis for the induction proof of the main theorem and

it also shows the optimality of the MWFMF algorithm when the buffer

size is very large so that all the requests in the request queue reside

in the buffers. Lemma 2.3 augments Lemma 2.2 by further showing that

algorithm iMFMF minimizes the sum of completion times of all the

requests.
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LEMMA 2.1

(1) In a period of m sub-cycles, every module can be initiated at

most once.

(2) At the beginning of each sub-cycle, at least one free module

is available for scheduling.

Proof

(1) Obvious, because each module takes a time of m sub-cycles to

service a request.

(2) Consider a time interval of m sub-cycles. Since at most one

module can be scheduled in each sub-cycle, the total number of

modules scheduled in m sub-cycles is less than or equal to m.

At the beginning of its current sub-cycle, if a module is

scheduled m sub-cycles ago, then it will finish its service at

the current sub-cycle and is available for scheduling. If a

module is not scheduled m sub-cycles ago, then the total number

of modules scheduled in the last m sub-cycles is less than m.

Therefore, at least one module is available for scheduling at

the beginning of a sub-cycle.

Q.E.D.

LEMMA 2.2

If all the requests in the request queue reside in the associative

* buffers (that is, the buffers are large enough to accompany all these

requests), then algorithm MWFMF minimizes the maximum completion time

for independent, random requests in Organization I.

Proof

The maximum completion time is governed by the longest queue In the



system.

Assume without loss of generality:

t'l > '2" . . " >-m

Case 1: 'l = 0,

MWFMF schedules module 1 first.

initiate module 1

! time

All modules will be initiated at most once in here due to
lema 4.1 (if number queued on it is non-zero) and all
requests queued every module except 1 can be initiated
before the last request queued on module 1 is initiated.

C 1*m + I sub-cycles (initiate module j #1. first)

Case 2: i > 0

Let module j be the module such that

i .= 0 and i1>0, i2>0,...,ij>0.

That is, module j is the free module with the largest amount of queued

requests. This will be the module scheduled by the algorithm MWFMF. In

fact, the module scheduled at this point is unimportant because the max-

imum completion time is governed by module 1.

Cma x = 1 m + (m-Z1 ) sub-cycles

Therefore:

min Cma= x m, (m-i,) mod m sub-cycles

Optimi m algorithm: MWFMF

On the other hand, if t1- > ... >tm and il, '2 -O then the Croo's

are identical whether module 1 or 2 is scheduled first. A similar

proof holds for the case t >t2 >-  " .

22 m
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LEM-1 2.3

If all the requests in the request queue reside in the associative

buffers, then algorithm MWFMF minimizes ICj for independent, random

requests in Organization I where C is the completion time for the

j'th request.

Proof

Assume without loss of generality:

1 >2 > .
tMConsider two modules a, b, such that =0 0  and Za> Let

Ca,b(Cb ') be tihe sum of completion times of scheduling a before b

(b before a) for modules a and b only. If b is scheduled before a,

then

b,a Cb + Ca - F(ta+ 1)eta + ( t )Lb + a

Comparing this with the case of scheduling a first, it is found that:
m

Cb - + Cb - (t+ 1)t + (L + 1) t ] + b

Since t.> b -> C <C this implies that scheduling the moduleSince ga  a,b< b,a'

with a larger amount of queued requests can reduce 1C . By adjacent

pairwise interchange, it is therefore better to schedule the module

with tie maximum amount of queued requests if it is free. If the

module is not available, scheduling the free module with the maximum

amount of queued requests Is also optimum.

Q.E.D.

From the proofs of Lemmas 2.2 and 2.3, it is seen by using the

fMWFMF algorithm that,

(1) The throughput of the memory is at a maximum because the maximum

time to complete a set of jobs is minimized (Lema 2.2).
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(2) The average waiting time is minimized. This is because Ci, the

completion time for the j'th job, equals the waiting time for the

j'th job.

WU. - C. - 0, (all the Jobs are available at t = 0). As a result,

average waiting time = JW./M is also minimized (Lenma 2.3).

THEOREM 2.6

If all the requests in the request queue do not reside in the associative

buffers, (that is, the buffers are not large enough to accompany all the

requests in the request queue), then algorithm MWFMF minimizes the

expected maximum completion time for independent, random requests in

Organization I.

Proof

i In order to prove this theorem, the following two parts must be proven

and the theorem follows from the result of part (a).

(a) Algorithm MWFMF minimizes the expected maximum completion time for

independent, random requests.

(bM Let states

S $2 l i•",(Z2 ,i a)' (t2 'b), . }k

where "..." indicates that the remaining states are identical for

S. and S2 .

Since the states of other modules are identical, and we assume that

Z 2>

ZI+ - + b2
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and

m > ia> ib>O or m=>Zb>a>O with equal probability.
If 2 1 e

2 1
If Za2 z; , then ECmax(S1)k =Erl.m(S 2 )k .

These two parts can be proved by induction. The truth is first estab-

lished for k = 0, i.e., when all the requests reside in the buffers.

These parts are then assumed to be true for any positive integer k and

the proof is complete by proving the case of k + 1.

(1) k--0

(a) MWFMF is optimal. This is established by Lemma 2.2.

(b) If there exists module z such that Z> Z  2, a s

andZ2> I then the maximum completion time for both S and Sa a 1 2

depends on tz and are identical. Therefore,

EC mx(S) 0 =C x(s2) o

If there does not exist module z such that tz>t 2, then the maximum
za

completion time of S2 depends on module a. Let there be two
2 >1 1 > 3+I ] 2 >2an

modules, x in S and y in S2 such that Za X a ' ynd

ix M = 0. The following three cases can be identified.

time; S2 T2 T T" "' 2 2

Starting Sequence Ending Sequence

I Cm s ()0 EC max 20
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time .

Starting Sequence Ending Sequence

Cax(S )0  ECm(Sl)10 < Cmax(S2)0  ECmax(S2)0

(3) Z~ - , i -o, Z<m
21

timeS! s2 IE l' E' 2N ..

Starting Sequence Ending Sequence

2. 1. <-

__________________________________time

S2
Starting Sequence Ending Sequence

Since t2 1 , this implies that t1- ~2 , therefore the states

S1 and S2 are symmetric in the states of the modules a and b and the

* probability that i- 0, z <m is equally likely as the probability that

a 0, b M

max(s m(Sl ' 'a<1 oa

26

.. . . .. .. ..Mi



+Cmax(S2' ' ,<<m)o*P"(a - o, 4<m)

= ECmax(S2 )0

(II) Induction hypothesis:

Assume that the theorem is true for a positive integer k, that is,

(a) MWFMF algorithm minimizes the expected maximum completion

time for independent, random requests when the number of

I remaining requests in the request queue is k.
(b) Z ,tenE a x)I ~n~(S)z

( If t2 1,then EC (S ) ECm(S

ift t thnEC mx(S )=EC m I(
a =x S24-

(III) When the number of remaining inputs is k+l,

(a) Without loss of generality, let modules 1, 2, ... , j be the

set of free modules. Choose any two modules, say I and 2,

so that t1>t2 and there does not exist pr={l,2,...,j}such that

t 1 >t >t 2 We want to compare the difference between

scheduling module I and module 2.

(1) Schedule module I in this sub-cycle,

{I0), (t 2 ,O), ,.., (M'm)Z .k+1

A new input now enters the buffers; this input can be

a request directed to any module in the set with equal

probability I/m (due to the assumption of independent,

random requests).

New states after scheduling module 1:

1 enters: SZ = {(Z l)(Z2 ,0), ... , ( 2m,(Zm+l) mod m)lk
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2 enters: S2 = {(tl-, ),(2+1,0), .. ,(Zm,(im) mod m)}

enters: Sm = {(t -1, 1), (Z2, 0), ...,(tm+,(im+l) mod m)}k

(2) Schedule module 2 in this sub-cycle.

{(ti' 0)9 (t290)9 ... ,9 (-m, m)}1k+1

M> {(1o), -(Z2 1,1),+ mod m)lk+l

New states after scheduling module 2:

1 enters: = {(Z1+1, 0), (Z2-1, 1 , ...,(tm,(zm+l)mod m)}/k

2 enters: S = {( 1 ,0),(L2 ,1), ""'(Lm' (Zm+1)mod m)}/

m enters: " = {(Z1 o),(Z 2-i, i), ... , (Zm+1, (im+1)mod m}/

It is seen that ECmax(S)<ECmax()max() and

EC max(SJ)<EC max(W) for j#1,2. In proving ECmax (St)<EC (), we

can use the induction hypothesis 11(b) and let ia-o, /o-1, Lea Za-

Ca2 -Z t,2 -'2 . The other parts can similarly be proved. Since the

expected Cmax is a weighted sum of the expected Cmax of all the

corresponding states, it is therefore better to schedule module 1,

the module with a longer queue, first. By using the adjacent pair-

wise interchange argument, the free module with the maximum number
of queued requests should be scheduled first.

(b) In proving this theorem, the following parts are identified.

(1) Z 2>l ; both modules a and b are not scheduled in the

current sub-cycle. This can be due to (1) a>0 and

Sib>O; i.e., both modules are busy; or (2) there exists a

* 2free module z such that f2 is greater than t if ia-O

or if ib-O. Since it is assumed in the induction
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hypothesis II(a) that free modules with a longer queue should

be scheduled, therefore module z will be scheduled in this

case.

After module z is scheduled, a new input enters the buffers.

For state S '..., , , ,,•

a enters:

a {...9(Z ,(i+1)mod m),( ',(i b+1)mod i), '}k

b enters:
sb- _ ...,(t ,(i+1)mod m),( 1+1,(ib l>od m),...k

j,j#a,b enters:

Jz . ,(i,+l)mod m),( 1 (i,+1)mod ,  "}
For state S2  {''"(CS'i mt)'(eb,') "

a enters:

S *a .( 2 +1' (Z+i) mod m) (40 b,41 l-)mod in),

b enters:

b 2... ,(( +,)mod m),( +i,( ,+)mod in),..

j,j#a,b enters:

-~ I ..( ,(L +1)rnod m), ( 2 , (ib,4-)mod mn), .}a a

By the induction hypothesis,

EC ,(S)< EC,,,(Sa) 2 1+

ECWax(S b) < EC(S) b 2 1+

ECx(Sj) ECM.(Sj)k V y a,b

Therefore
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ECma(S )k+l ECmax (S2)k+l

(2) z>b' and there exists a module x such that i x = 0
and 2>t >Z2 ifi ft 0oor

aand X a a

eb >e.Xt 'b ftO

Let us look at the first case:

s- ... ,(t2,o),(b 2 ,4),...,(z,,o),

According to the MWFMF algorithm, module x should be

scheduled in S1 and module a should be scheduled in S2.

It is necessary to compare the expected Cmax after these

have been scheduled. Suppose module x is not scheduled

in both states, from part III(b)(1), it is seen that

ECm (Sla 6ched4Zed)k < ECmax(S2 1a achduZ ed)k. However,

due to the induction hypothesis, II(a), scheduling x in

state S would be better than scheduling a because
zX > za

I 1

ECmax(S 1ix cheduted)k < ECmax(Sjj a scheduted)k

Therefore:

ECmax(Sjj x 6che ed)k < ECmax(S2 azcedutd)k

and

EC (s) C Smax k+1 < Emax(S2)+1

The other case, i.e., >x>t 2 and ib-O can be

similarly proved. For the remainder of the proof of this

theorem, it Is assumed that t for all x#a,b

and iX0.
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(3) t 2 > t 0 < <.

) a a o, -

Due to the induction hypothesis, module b should be

scheduled in S1 and S2 .

For the state S, schedule module b in this sub-cycle,

f..., ,i), f( ,o),- .
a 'a' k+1'

=> {.... , (ia+i) mod m),( -1,1),

New input enters the buffer:

a enters: Sa (Z 1 +1,(i +1) mod m),( 1-,1), . . .a anes k1 =..

b enters: S b (..., (, +1) mod i),

j,jja,b enters:

*1 .- {...,(t 1,(a+l mod m),(t 1. 1 ), -

For state S2, schedule module b in this sub-cycle:
{...9 (t, 2, 2,, o, •. . .I

=> {..., (, (,1 4+ 1 ) mo d , , .

New input enters the buffer:

a enters: S , {...,( 2 + 1, (i+i) mod m),

enters: Sb .. ,(2 a(a+1 modM' 2 '

Sb((L_(,d ),,•t - •i},

j,j#a,b enters:

- (... ( i( +i)modm),t( 2 ii,2a ak

By the induction hypothesis,

ECmax(ST)k < ECmax(St)k

Emax(si)k < ECm(s')k

ECmax(S{)k < ECmax (Sq)k~ \\ j~a,b
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Therefore:

EC a(S)k+. < ECma ( 2 )k+1

(4) ta >L a= 0,0<L'b<

Due to the induction hypothesis, module a should be

scheduled in S1 and S

For state S1 schedule module a in this sub cycle,

-- >{..,e,1 1,1)(t , ib+ 1)mod m), •••}k+l

New input enters the buffer:

a enters: Sa
1S- f..., (ea,),( , ib+ 1) md m),

b enters: Sb

S1...,)o -,1m

j,j'a,b enters: SJ1

For state S21 schedule module a in this sub-cycle,

a c..I...1,
(t 2.., 1, , 2 , + ) od m) ....}k+1

New input enters the buffer:

a enters: S , {...,(.1),(.b 2 ,(b+l)mod in),

b enters: Sb

. {...,( a-,i), +, ¢(+1) mod i),

j,J~a,b enters: Si
. ( 2 (,,),odm), ••
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By the induction hypothesis:

EC (S8) < EC(Sb)I.
malx 1 a ma 2/

EC (Sb) < EC (Sa);
mx1 = max 2

EC=(Sj)~ ECmaX(Sq) \Ij , b

Therefore:

ECmax (s1 ) + l ECmax(S)k+l .
(5) t 2 1 Both modules are not scheduled in the current sub-

La

cycle. With the similar reasons as in III(b)(1), there exists

a module z which is scheduled in the current sub-cycle. Because

of the symmetry between the states of modules a and b, by the

induction hypothesis IT(b),

ECmax(Sb)) - EC (S) nd
1k max(S2k

EC.ax(s - ECma(SI)k a b

The refore:

EC mx(s 1) k+j - Elynx (S2)k+l

6 2; There exists a module x such that ix=O and

>t >L 1 i f - or
a X a a

1 2
e > "x> tb if Xb-O

For the first case,

1 t... , , , .,o), 1'k

s2 a k-,L )( , ,' ' ) ' " }+l"

With a similar argument as in III(b)(2), suppose module x

is not scheduled in both states and module a is scheduled.
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Due to the symetry between the states of module a and b,

and by the induction hypothesis 11(b),
ECx(Sil a scheduted)k = EC ax(S 2I a &chedu.ed)E.

However, due to the induction hypothesis, If(a), schedul-

ing x in state S1 would be better than scheduling a

because tx >ta

ECmax(S 1 1 x zeheduted)< EC,,.x(S 1 1 4cscheduted).
< ECrmx(s21 a ,cheut)kz

Therefore:

ECmax (Sl) k+, < ECmax( (S) k+I

1 2The other case, i.e., tb > t x > th and iLb=O can be

similarly proved.

(7) t 2 . 1  E <M

The proof is very similar to 111(b)(3) an d IIl(b)(4),

except in this case, Z .2* Therefore, the states S1

and S2 are symetric in the states of the modules a and

b. By the same argument as in the proof of I(b)(3), the

probability that ib=0, i.< m is equal to the probability

that ca-O, ib<m. This implies:

ECmax(Sl)k+l - ECmax(S2)k+

From the above seven cases, it is seen that in all cases,

EC M"(S)k+1 <ECmax(S2)k+1 •

Therefore, by induction, part (b) of the theorem is proved.

Because part (a) of the theorem utilizes the result of part (b) of the

theorem, part (a) of the theorem is proved.
*Q.E.D.
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The above theorem has demonstrated that algorithm MWFMF is optimal

in the sense that it minimizes the average completion time for a fixed

set of random requests. Intuitively, algorithm MWvFMF is better because

it tries to keep all the modules as busy as possible. Suppose that some

of the modules are requested more often than others. The requests to

these more frequently requested modules become a bottleneck to the

system whatever scheduling algorithms are used. Whwever, a better

scheduling algorithm should make use of the free cycles to schedule

some requests for the less popular modules so that these requests would

not accumulate after the processing of the more popular requests. This

is the deficiency that occurs in other algorithms and is overcome by

the MWFF algorithm.

In addition to proving that the MWFMF algorithm has the best

average case behavior, it may be necessary to show that the algorithmI also possesses the best-case behavior and the best worst-case behavior.

However in this case, the best-case and the worst-case behavior are

identical for all algorithms. The best-case b~havior occurs when all

* the requests are made in a sequential order, that is, 0, 1, ... , M-1, 0,

19,,.., m-1. etc. No contention would occur and the throughput of the

memory is maximized, that is I request serviced every sub-cycle. On the

other hand, the worst case behavior occurs when all the requests are

directed to a single module. In this case, the bottleneck is at the

module and the throughput of the memory is I request serviced every m

sub-cycles. Algorithm I4WFMF is better than other algorithms because it

has a better average case behavior even though its best- and worst-case

Althughtheexpected maximum completion time of the algorithm is

35



minimized, it is not possible to make a similar conclusion as in Lemmla

2.2 that the expected throughput of the memory is maximized because in

this case, there is no relation between the expected maximum completion

time and the expected throughput of the system. Furthermore, it is not

useful to prove a similar theorem for the IC . case as in Lemmna 2.3

because it is unclear that the objective of minimizing JE(C .1will be

of any meaningful value.

Although Theorem 1 establishes that fact that the MWFMF algorithm

is optimal, no throughput values are obtained analytically. In the next

two sections, the throughput of the system is evaluated by using two

*1 techniques, embedded Markov Chains and simulations.

2.6 Simulation Technique

2.6.1 Simulation Results

Due to the difficulties mentioned in the last section, our evalu-

ations are based on simulations. The simulations are run on a CDC 6400

computer. The simulation program was written in Fortran and the total

time to generate all the results took over 12 hours on the CDC 6400.

Table 2.1 shows the results of simulation runs on Organization I

for the memory utilization and the average waiting cycles where a

waiting cycle is defined similar to Flores [FL064) as the ratio of the

waiting time and the memory cycle time. Two types of request sequences

are considered, one in which the requests are generated randomly, and

one in which the requests are derived from the execution trace of a

program. The traces used have a size of 500,000 and were obtained by

running a scientific Fortran program derived from BMD applications on a
* CDC 7600 and they personify program characteristics of scientific
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applications. They have the following characteristics:

Table 2.1a. Simulation Results for Organization I with RR Scheduling

Algorithm (95% confidence interval shown assuming normal distribution)

Random Request Model Trace Driven ModelE(Memory E(Waiting E(Memory E(Waiting
m b Utilization) Cycles) Utilization) Cycles)

2 0 0.668±0.0 1.75±0.0 0.727±0.003 1,69±0.0
1 0.801±0.017 2.25±0.04 0.882±0.003 2.13±0.01
2 0.858±0.001 2.75±0.0 0.928±0.003 2.62±0.33
3 0.890±0.004 3.25±0.02 0.960±0.004 3.08±0.52

4 0 0.401±0.004 1.62±0.01 0.472±0.026 1.53±0.02
1 0.565±0.015 1.89±0.02 0.636±0.043 1.79±0.07
2 0.667±0.009 2.12±0.02 0.732±0.050 2.03±0.14
3 0.726±0.007 2.38±0.02 1 0.825±0.059 2.21±0.23

8 0 0.222±0.002 1.56±0.0 0.276±0.026 1.45±0.06
1 0.363±0.006 1.69±0.01 0.432±0.041 1.58±0.07
2 0.461±0.005 1.81±0.01 0.525±0.049 1.72±0.10
3 0.534±0.006 1.94±0.01 0.610±0.060 1.82±0.13

12 0 0.154±0.003 1.54±0.0 0.186±0.026 1.45±0.05
1 0.266±0.005 1.63±0.01 0.306±0.042 1.55±0.10
2 0.354±0.005 1.71±0.01 0.408±0.058 1.61±0.11
3 0.423±0.008 1.79±0.01 1 0.484±0.070 1.69±0.10

16 0 0.117±0.002 1.53±0.01 0.157±0.015 1.40±0.051 0.209±0.003 1.60±0.01 0.254±0.024 1.49±0.05
2 0.285±0.003 1.66±0.01 0.345±0.033 1.54±0.06

3 0.350±0.004 1.71±0.01 0.412±0.039 1.61±0.09
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Table 2.1b. Simulation.Results for Organization I with FFF Schedulin

Algorithm (95% confidence interval shown assuming normal distribution

_Random Request Model Trace Dri veo~ Model
~E(Moy~ E(Waiting E'(Memory E(Waiting

m b Utilization) Ccles)_ Utilization) _Cycles)

2 0 0.501±0.0 2.00±0.0 0.571±0.002 1.88±0.0
1 0.668±0.014 2.50±0.05 0.789±0.003 2.27±0.11
2 0.750±0.001 3.00±0.0 0.865±0.003 2.73±0.34
3 0.802±0.003 3.50±0.02 0.924±0.003 3.17±0.53

4 0 0.289±0.003 1.86±0.01 0.316±0.018 1.79±0.04
1 0.407±0.011 2.23±0.04 0.476±0.027 2.05±0.12
2 0.489±0.007 2.53±0.04 0.600±0.041 2.25±0.25
3 0.544±0.008 2.84±0.06 0.678±0.048 2.48±0.42

8 0 0.173±0.002 1.72±0.01 0.184±0.017 1.68±0.06
1 0.264±0.004 1.95±0.02 0.304±0.029 1.82±0.12
2 0.330±0.005 2.14±0.03 0.379±0.037 1.99±0.16
3 0.378±0.003 2.32±0.03 0.441±0.043 2.13±0.20

12 0 0.126±0.002 1.66±0.01 0.147±0.023 1.57±0.06
1 0.201±0.003 1.83±0.01 0.235±0.033 1.71±0.11
2 0.258±0.002 1.97±0.02 0.305±0.042 1.82±0.13
3 0.303±0.004 2.10±0.03 0.365±0.051 1.91±0.17

16 0 0.100±0.001 1.63±0.01 0.106±0.01C 1.59±0.05
1 0.163±0.002 1.77±0.01 0.187±0.017 1.67±0.08
2 0.211±0.003 1.89±0.01 0.256±0.024 I1.73±0.10
3 0.252±0 .003 1.99±0.02 0.314±0.030 1.80±0.13
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Table 2.1c. Simulation Results for Organization I with MWFMF Scheduling

Algorithm (95% confidence interval shown assuming normal distribution

Random Request Model Trace Driven Model
E(Memory E(Waiting E(Memory E(Waiting

m b Utilization) Cycles) Utilization) Cj:les

2 0 0.667±0.008 1.75±0.01 0.727±0.01 1.69±0.0
1 0.800±0.0 2.25±0.0 0.882±0.003 2.13±0.11
2 0.859±0.003 2.75±0.03 0.928±0.003 2.62±0.33
3 0.888±0.001 3.25±0.02 0.960±0.003 3.08±0.04

4 0 0.479±0.003 1.52±0.0 0.515±0.0 1.49±0.02
1 0.612±0.003 1.82±0.01 0.673±0.043 1.74±0.08
2 0.691±0.004 2.09±0.02 0.776±0.053 1.97±0.18
3 0.740±0.004 2.35±0.04 0.831±0.059 2.20±0.28

8 0 0.355±0.002 1.35±0.01 0.385±0.038 1.33±0.06
1 0.466±0.002 1.54±0.01 0.533±0.052 1.47±0.08
2 0.544±0.004 1.69±0.01 0.612±0.058 1.61±0.11
3 0.597±0.005 1.84±0.02 0.686±0.068 1.73±0.16

12 0 0.295±0.002 1.28±0.0 0.330±0.052 1.23±0.05
1 0.399±0.003 1.42±0.01 0.472±0.066 1.35±0.08
2 0.475±0.003 1.53±0.01 0.533±0.079 1.45±0.10
3 0.524±0.002 1.64±0.01 0.614±0.088 1.54±0.12

16 0 0.259±0.001 1.24±0.0 0.300±0.028 1.21±0.05
1 0.357±0.003 1.35±0.01 0.416±0.040 1.30±0.07
2 0.424±0.002 1.44±0.01 0.511±0.049 1.37±0.08
3 0.476±0.002 1.53±0.01 I 0.570±0.055 1.44±0.10

fraction of instruction word fetches 0.597

fraction of data word fetches 0.336

fraction of data word stores 0.067

average number of accesses per Inst. executed 0.600

number of Instructions per instruction word 2.787

fraction of instructions that need data 0.242

fraction of instructions that are
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unconditional jumps 0.044

successful conditional jumps 0.030

unsuccessful conditional jumps 0.015

number of instructions executed between

conditional jumps mean 22.3

st'd dev. 10.3

unconditional jumps mean 22.8

st'd dev. 24.7

successful conditional jumps mean 33.9

st'd dev. 19.2

all dependent events mean 11.4

(Cond. + uncond. jumps) st'd dev. 10.1

In Table 2.2, the simulation results for Organization II are shown.

Since the existence of multiple sets of buffers allows a request at Ba

to be blocked by a set of full buffers in a module while buffers of

other modules may be empty, a column has been included in Table 2.2 to

show the buffer utilization (this excludes the buffer ST). The queue

utilization results shown in Table 2.2 are nomalized with respect to

the buffer size b.

2.6.2 Application of Multiple Linear Regression to Obtain a Closed
Form Formula

Using the results of the simulations and the assumption that the

utilization is approximately 1 when b>m (e.g., b-100, m=4), multiple

linear regression is applied to fit a curve to the results [DRA66].

Based on the tail area of the partial F-value for testing the null

hypothesis that a regression coefficient is zero, some of the terms in
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the polynomial have been eliminated. In Table 2.3, the coefficients

for the regression analysis on the utilization and the waiting cycles

of the two organizations under ?4WFMF scheduling algorith are shown.

The errors in the estimation can be shown to be less than 4% in most

cases except for a few cases with b=0, where the error gets to around

10%. From the polynomial equation we have obtained, we can extrapolate

our results beyond b=3. The errors in extrapolating the values of

utilization are small because the asymptotic value of utilization when

b is large is known. However, the errors may be large when extrapol-

ating the values of waiting cycle because its asymptotic values are

not known. With Organization I, egu-1, and therefore the values of

waiting cycles can be derived from the values of utilization by applying

Little's Formula. With Organization II, eB< 1, and the values of %,b

and w1M b must be known in order to estimate e.. Since asymptotic

values of wmb and e. do not exist, the errors may be large in this case.

In Figures 2.5 to 2.10 the performance of Organizations I and 11

are shown. The actual simulation results are used for b53 while extra-

polations are made for b>3. In Figure 2.5, a plot of the improvement

in memory utilization with buffer size for Organization I with m a 8

is shown. It is seen that the improvement in memory utilization

approaches a constant rate as the buffer size is increased. Further,

the I4WFMV algorithm gives the best performance. In Figure 2.6, a plot

of the expected waiting cycles for different buffer sizes of Organiza-

tion I is shown for m = 8. It is seen that the increase of waiting

cycles is much slower than the increase of buffer sizes and the

increase is almost linear. The trace driven simulation results show a

higher improvement in memory utilization and a smaller number of waiting
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Table 2.2a. Simulation Results for Organization II with RR Scheduling

Algorithm (95% confidence interval shown assuming normnal distribution)

Random Request Model Trace Driven Model
E(Memory aiti E(Buffer E(Memory E(Wating E(8uffer

m b Utilization) Cyles Utilization) Utilization) cycles Utilization)

2 0 0.667-+0.0 1.75±0.0 -0.727±0.003 1.69±0.0

1 0.731±0.005 2.750±0.03 0.705±0.009 0.847±0.058 2.70±0.36 0.57±0.136

1 0.467±0.006 1.97±0.01 0.7±0.003 0.58±0.055 318±0.11 0.384±0.10

3 0.70±0.00342.66±0.04 0.737±0.006 0.862±0.085 2.95±0.45 0.518±0.142
12 0 0.41±0.003 1.54±0.01- 0.186±0.026 1.5±0.052

*I1 0.427±0.005 2188±0.01 0.42±0.005 0.599±0.083 1.73±0.10 0.354±0O.070
2 0.769±0.007 2.26±0.02 0.318±0.007 0.873±0.058 2.22±0.36 0.504±0.136
3 0.661±0.005 2.66±0.02 0.38±0.006 0.753±0.1094 2.634±0.57 0.381±0.158

16 0 0.117±0.002 1.53±0.01 0.17±0.015 1.40±0.056
1 0.37±0.005 1.82±0.01 0.249±0.004 0.502±0.048 1.7±0.09 0.303±0.069

2 0.54±0.008 2.18±0.02 0.283±0.025 0.692±0.066 2.05±0.17 0.333±0.075

3 0.626±0.004 2.54±0.08 0.300±0.005 0.745±0.072 2.23±0.32 0.284±+0.094
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Table 2.2b. Simulation Results for Organization II with FFF Scheduling

Algorithm (95% confidence interval shown assuming normal distribution)

____Rand Reues Mdel Trace Driven Model
E (Memory E(Wiiing E(Buffer E(Memory E(Waiting E Bu ffe-r

m b Utilization) cycles Utilization) Utilization) Cycles Utilization)

2 .510. .0±. 0.571±0.002 1.88±0.0
1 0.670±0.004 2.74±0.0 0.669±0.004 0.789±0.003 2.56±0.16 0.732±0.045
2 0.751±0.003 3.50±0.02 0.688±0.010 0.865±0.003 3.30±0.48 0.743±0.097
3 0.789±0.002 4.27±0.01 0.699±0.004 0.924±0.003 4.00±0.62 0.758±0.138

4 0 0.289±0.003 1.86±0.01 -0.316±0.018 1.79±0.04-
1 0.458±0.005 2.54±0.01 0.454±0.007 0.557±0.042 2.38±0.22 0.519±0.095
2 0.558±0.004 3.19±0.03 0.483±0.009 0.702±0.048 2.95±0.48 0.558±0.149
3 0.628±0.003 3.80±0.04 0.503±0.007 0.801±0.057 3.54±0.72 0.596±0.184

8 0 0.173±0.002 1.72±0.01 -0.184±0.017 1.68±0.06-
1 0.329±0.005 2.32±0.03 0.311±0.010 0.406±0.040 2.20±0.19 0.360±0.069
2 0.436±0.002 2.88±0.02 0.348±0.004 0.604±0.060 2.73±0.36 0.461±0.121
3 0.498±0.004 3.44±0.07 0.363±0.011 0.671±0.067 3.36±0.65 0.492±0.162

12 0 0.126±0.002 1.66±0.01 -0.147±0.023 1.57±0.06-
1 0.278±0.004 2.20±0.03 0.250±0.007 0.396±0.055 2.03±0.18 0.325±0.080
2 0.383±0.005 2.71±0.05 0.285±0.010 0.510±0.073 2.64±0.43 0.376±0.137
3 0.457±0.004 3.22±0.05 0.310±0.009 0.529±0.085 3.19±0.55 0.358±0.752

16 0 0.100±0.001 1.63±0.01 - .106±0.010 1.59±0.05-
1 0.252±0.003 2.11±0.02 0.217±0.005 0.345±0.032 1.96±0.14 0.267±0.050
2 0.349±0.003 2.61±0.03 0.250±0.005 0.478±0.046 2.33±0.30 0.286±0.082
3 0.424±0.004 3.09±0.05 0.141±0O.008 0.527±0.050 2.62±0.46 0.262±0.092
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Table 2.2c. Simulation Results for Organization II with IJFMF Scheduling

Algorithm (95% confidence interval shown assuming normal distribution)

____Random Request Model Trace Driven Model
E(Memory E Wating E(Buffer E(Memory E(Waiting E(Buffer

m b Utilization) Cycles Utilization) Utilization) Cycles utilization)

2 0 0.667±0.008 1.75±0.01 -0.727±0.003 1.69±0.0-
1 0.799±0 .003 2:50±0.01 0.700±0.005 0.882±0.003 2.43±0.16 0.760±0.049
2 0.856±03.005 3.25±0.01 0.714±0.007 0.928±0.003 3.18±0.44 0.761±0.102
3 0.890±0.020 4.00±0.02 0.724±0.006 0.960±0.003 3.92±0.61 0.76M±.142

4 0 0.419±0.003 1.52±0.0 -0.515±0.029 I1.49±0.02-
1 0.648±0.001 2.13±0.01 0.482±0.002 0.738±0.052 2.07±0.18 0.539±0.090
2 0.743±0.003 2.72±0.01 0.515±0.005 0.838±0.059 2.70±0.36 0.588±0.135
3 0.795±0.002 3.31±0.02 0.528±0.003 0.902±0.032 3.35±0.53 0.625±0.157i18 0 0.355±0.002 1.35±0.01 -0.385±0.038 1.33±0.06-
1 0.534±0.005 i 1.85±0.01 0.328±0.007 0.624±0.062 1.84±0.13 0.398±0.077
2 0.651±0.003 2.33±0.01 0.371±0.003 0.799±0.079 2.40±0.26 0.498±0.118
3 0.717±0.003 I2'81±0.02 0.391±0.004 0.849±0.083 2.95±0.44 0.510±0.144

12 0 0.295±0.002 1.28±0.0 -0.365±0.05 1.23±0.05-
1 0.472±0.005 1.72±0.01 0.256±0.005 0.624±0.089 1.68±0.14 0.343±0.095
2 0.602±0.004 2.16±0.01 0.308±0.004 0.735±0.106 2.19±0.29 0.395±0.135
3 0.683±0.006 2.58±0.03 0.332±0.009 0.756±0.109 2.61±0.49 0.377±0.154

16 0 0.259±0.001 1.24±0.0 - 0.300±0.028 1.21±0.05-
1 0.439±0.006 1.64±0.01 0.217±0.007 0.565±0.054 1.62±0.10 0.289M.061
2 0.564±0.007 2.05±0.02 0.264±0.007 0.692±0.066 1.97±0.21 0.306±0.083
3 0.647±0.003 2.44±0.02 0.290±0.004 0.745±0.072 2.17±0.34 0.271±0.096
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Table 2.3 - Coefficients of 3rd Order Polynomial Regression of Organization I
and II under MWFMF Schedulin Algorithm (RRM - Random Request Model; TDM -
Trace Driven Model) Note: AU othe,r. coe6.'en.st ,'L.e ,et ,to zew

SUtilization b 1/3 b /

Model M2  m 1/m b1 / 3  b 1 / 2 1/ b4 m m const.
RRM-I 0.00050 -0.02011 0.58124 1.80176 -0.32495 -1.37185 0.27655 -0.21970 0.41273
TDM-I 0.00065 -0.02312 0.62605 2.29106 -0.45177 -1.69628 0.18115 -0.18268 0.45447
RRt-II -0.00009 -0.00283 0.79465 3.04862 -0.64641 -2.17849 -0.22013 0.00866 0.26880
TDM-II -0.00012 -0.00301 0.80863 2.72327 -0.61966 -1.80155 -0.44904 0.11118 0.33023

Waiting Cycles

Model m3  m2 m2b m b mb const.

RRM-I -0.00109 0.03312 0.00314 -0.31779 0.61021 -0.08138 2.30046
TDM-I -0.00100 0.03038 0.00308 -0.29282 0.56690 -0.07881 2.19725
RRM-II -0.00082 0.02570 0.00219 -0.26252 0.84230 -0.06200 2.19883
TOM-Il -0.00075 0/02432 0.00016 -0.25363 0.77708 0.03024 2.12700

cycles than the random request model. This is because there is a higher

correlation between consecutive requests and the requests are likely to

be made in a consecutive order. As a result, there is less contention in

the system. The curves showing the estimated results due to dependencies

are discussed in the following sections. The above observations are also

true for other values of m. Further, the MWFMF algorithm has the minimum

amount of waiting time among the three algorithms studied. In Figures

2.7 and 2.8, the decrease in memory utilization and waiting cycles for

increasing degrees of interleaving of Organiation I with a MWFMF algorithm

are plotted. The rate of decrease in memory utilization is more
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2 pronounced and the utilization Is higher when the degree of interleaving

is small. Also, the effects on waiting cycles due to buffer size is

very small when the ratio of buffer size to degrees of interleaving is

small. Other scheduling algoritms also possess the same properties.

The effects on the memory utilization and the waiting cycles for various

buffer sizes of Mode II are similar to those of Organization 1. In

Figure 2.9, the effects on buffer utilization are shown for various

buffer sizes of Organization II. It is seen that the buffers are less

utilized as the size is increased. This also accounts for the diminish-

Ing increase in memory utilization as the buffer size is increased. The

difference in buffer utilization among the three scheduling algorithms is

very small. However, extrapolations for values of b beyond 3 are not

accurate for Organization II for reasons noted before. In Figure 2.10.

a plot of buffer utilization versus different degrees of interleaving is

shown. The buffer utilization drops as the number of modules is increased.

However, it is seen in both Figures 2.9 and 2.10 that the buffer

utilization is not sensitive to buffer size changes. The decrease in

buffer utilization is due to the fact that there is a higher probability

that STis blocked when the number of modules is increased.

2.7 Effects of Separating the Instruction and the Data Area

The previous results have been obtained from simulations using a

merged instruction and data area. Since an instruction access results

in some data accesses, it is desirable to place the data accessed in

modules not conflicting with the next inst. di4ction accessed. This

motivates us to investigate the separation of instruction and data area

into different modules in the main memory. Sastry et. al. [SAS75) and
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Nutt ENUT77) have made some pioneering studies on the separation of

instruction and data areas, but they have assumed a non-pipelined multi-

processor system. We study the effects with respect to a pipelined

processor here. In this section, an organization with separate instruc-

tion and data modules is compared against an organization with merged>4 instruction and data modules using the traces available. Consecutive

instruction words are put in consecutive instruction memories and

consecutive data locations are put in consecutive data memories.

The characteristics of the traces reveal that 60% of the accesses

'I are instructions and the rest are data accesses; therefore the modules

should be divided according to this ratio approximately. Since it is*1 desirable to have the number of instruction modules and the number of

data modules an integral power of 2 for ease of address decoding, the

modules are divided into a 4-2 partition so that four of the modules are

instruction modules and two are data modules. It is not possible to

designate exactly 60% of the modules as instruction modules and to

satisfy the requirement that the number be an integral power of 2. Since

there are 6 modules in the 4-2 partition, it is necessary to compare the

performance of the 4-2 partition against a hypothetical 6-way interleaved

system with merged instruction and data modules. The results are shown

in Tables 2.4 and 2.5 It is seen that the differences between the two

alternatives are minimal. In fact in some cases, the merged model seems

to perform a little better. This is due to the unqueal utilization and

waiting cycles of the modules in the separated case. From the simulation

results on the utilization of the individual modules (not shown), the

instruction modules are found to be under-utilizaed while the data

modules are found to be over-utilized. One way to improve the performance
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Table 2.4 Comparison between Merged and Separated Instruction-
Data Areas or Organization I -- Trace Driven Simulation

RR FFF MWFMF

m lb Memory Waiting Memory Waiting Memory Waiting
util. cycles util. cycles util. cycles

Merged 6 0 0.338 1.49 0.243 1.69 0.459 1.36
Inst.-Data 1 0.501 1.65 0.403 1.83 0.624 1.53
Areas 2 0.657 1.76 0.479 2.04 0.695 1.72
(m=6) 3 0.726 1.92 0.543 2.23 0.752 1.89

Separate 0.336 1.50 0.270 1.62 0 .
Inst.-Data 1 0.517 1.64 0.394 1.85 0.619 1.54
Areas 2 0.618 1.81 0.484 2.03 0.692 1.72

(4-2 ways) 3 0.696 1.96 0.540 2.24 0.730 1.91

Table 2.5 Comparison between Merged and Separated Instruction-
Data Areas for Organization II - Trace Driven Simulations

RR FFF MWFMF
m b Mem. Wait. Buf. Men. Wait. Buf. Mem. Wait. Buf.

Util. Cycle Util. Util. Cycle Util. Util. Cycle Util.

Merged 6 0 0.34 1.491 - 0.24 1.69 - 0.46 1.36 -
Inst.-Data 1 0.69 1.95 0.49 0.50 2.23 0.44 0.69 1.94 0.48
Areas 2 0.80 2.48 0.50 0.61 2.83 0.47 0.79 2.49 0.50
(m=6) 3 0.81 2.88 0.45 0.63 3.27 0.42 0.81 2.87 0.45
Sep. 6 0 0.34 1.50 - 0.27 1.62 - 0.49 1.34 -

Inst.-Data 1 0.65 1.98 0.47 0.49 2.18 0.40 0.67 1.90 0.43
Areas 2 0.75 2.42 0.45 0.57 2.74 0.41 0.76 2.41 0.45

(4-2 ways) 3 0.77 2.96 0.45 0.59 3.29 0.40 0.77 2.95 0.45

2.8 Degradation in Performance Due to Dependencies

In the previous sections, we have simulated the organizations

under the assumption that there Is a high request rate from the pipe so

that any empty buffers can be replenished until they are full or a

blockage occurs. However, this assumption is not totally valid in a

pipelined uni-processor. As mentioned earlier, there are three sources
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of interference which result in emptying the pipe and reloading a new

instruction stream. In the process of emptying the pipe, new memory

requests are not generated and the memory becomes idle after all the

pending requests are serviced. The utilization of the memory is there-

fore lower than our simulated results. One solution is to simulate a

pipe together with the memory. However, different computers handle

dependencies differently, and the simulation of a particular machine is

too limited in scope. We therefore choose to estimate the resulting

utilization with a general model.

2.8.1 The Model Used to Estimate the Performiance Due to Dependencies

2Without loss of generality, all dependencies can be represented
as a successful (the Jump is taken) or an unsuccessful conditional jump.

* In a conditional Jup instruction, the condition code is set earlier by

an instruction which may still be in the pipe. Until that instruction

finishes and sets the condition code, the Jump instruction cannot

proceed. It is assumed that the pipe prefetches but does not decode

the target instruction. If it is an unsuccessful Jump, the pipe can

proceed after the condition code has been set. If it is a successful

jump, the pipe has to wait until both the condition code is set and the

target instruction is fetched from the memory. An unconditional Jump

can be modelled as a succssful conditional Jump in which the condition

code is available immnediately. A register interlock is the same as an

unsuccessful conditional jump instruction and an interrupt is the same

as a successful conditional jump in which the entire pipe has to be

emptied.

& The model used in the estimation is shown in Figure 2.11. A
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*1V
linear pipe is considered. The instruction prefetch unit has to fetch

instructions ahead of the instruction decode unit so that the decode

unit never has to wait for instruction fetches. Let

L - number of stages of the pipe;

T atime needed to pass through one a stage of the pipe;

f =the number of instruction words prefetched.

The memory is assumed to be a single server with a constant service

M~,ada finite buffer space of length -m, b*f E.22

2.3). The service discipline in the buffers is FIFO and the waiting

time for a request is W (Eq. 2.4). Since we are interested in getting

an expected value of the performance, the model is a sufficient approx-

imation of the actual model. It is also assumed that the occurrences

of successive dependent requests are separated far enough and have no

effect on each other. By "far enough," it is meant that after a

dependency is resolved, sufficient time elapses so that all the buffers

are filled up before the occurrence of another dependent request. The

maximum time needed is am b*M (Figure 2.14). This assumption is

necessary because the effect due to each dependent request can be found

separately and the overall effect due to all the dependent requests is

* the sum of the individual effects. From the statistics of the traces

which are shown in Figures 2.12 and Figure 2.13, it is found thatF ~ successive dependent requests are separated by an average of twelve

instructions. Successive dependent requests may therefore have effects

on each. other and our analysis slightly under-estimates the actual

performance.
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2.8.2 Computation of Degradation in Performance

The effect of dependencies is measured in terms of an idle period.

An idle period of the memory is defined to be a time interval during

which requests to the memory stop. The idle period is measured in

terms of the number of memory sub-cycles. At the beginning of an idle

period, thenumber of r equests drops gradually to zero (Figure 2.14).

The resulting utilization of the module is lower as is evident from a

similar model with a smaller buffer size. When the pipe starts request-

ing again, the number of requests in the buffers gradually builds up to

the maximum amount. The idle period is defined in this way because it

* .1 represents an average length of the time during which the buffers are

not fully utilized. Let

d =distance in terms of the number of pipe segments between the

instruction setting the condition code and the conditional

jump instruction at the decode segment;

r =average number of requests generated per instruction executed;

i =number of instruction~s per instruction word;

= fraction of instructions executed that are successfulcJ
conditional jumps;

A fraction of instructions executed that are unsuccessful

conditional jumps.

In the trace driven simulation results in Section 2.7.1, the

instructions and the corresponding operands are assumed to be accessed

one after the other. In the current model, the instructions are fetched

* much earlier than the corresponding operands. We have ignored these

effects on the memory performance because there is very little
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correlation between the instruction address and its corresponding

operand address (except in some cases; e.g., an architecture which

implements the immediate mode, but the frequency of executing these

instructions is small).

Since it is desired to find the maximum performance of the memory,

the pipe must be designed in a way such. that it is fast enough and long

enough so that it is always able to fill up all the empty buffers in

the memory within a memory sub-cycle. This design follows from our high

request rate assumption. In this model, the pipe is essentially execut-

ing at the speed of the memory, that is, at the rate u. kt. The

assumptions made are:

(1) There are a large amount of return buffers in the pipe for serviced

requests. This assumption is necessary so that serviced requests

can always be returned to the CPU without delaying the initiation

of requests in the memory.

(2) Each segment in the pipe is very fast. This means that T is so

small that if sufficient instructions are available to the decode

unit, the pipe can generate enough requests to fill up all the

memory buffers in one memory sub-cycle. This means:

Tom b

That is

TT (2.5)
m, b

(3) Since it takes a time W (= Wm bin) to fetch an instruction, the

pipe would have executed i*f instructions in this time interval

at a rate of zj if no dependency occurs. Therefore
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> %,*m

m, b ~

we set
WmbL, bm I

6 ,b ab (2.6)

where jly is the smallest integer larger than y. The value of f

is chosen to be the smallest possible because when a conditional

branch is encountered, one of the two paths is not traversed and

therefore the instruction fetches for that path are wasted. The

value of f is kept small in order to reduce the effects due to

this waste.

(4) After an operand request is generated, the operand will be serv-

iced after an average time W. In the meantime, the corresponding

instruction passes through L-2 stages of the pipe in order to get

to the execution unit. The time for this instruction to pass

through the pipe must be longer than the waiting time for its

operand so that the pipe is not blocked by this instruction

waiting for its operand. We have

Ti L-2) > Wm~~
um,b mbm

We set

* *

LT' + 2 (2.7)

The value of L set in Eq. 2.7 is the minimum pipe length required

for a maximum memory performance. For a longer pipe, the memory

performance is lower because it takes a longer time for a dependent
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request to pass through the pipe. For a shorter pipe, the pipe is not

able to generate requests fast enough because the last stage of the

pipe is frequently blocked by unfinished operand requests. The value

of L chosen is therefore a compromise between these two effects. These

additional constraints can assure that the maximum performance of the

memory is achieved.

When a conditional jump instruction is encountered and the

condition code is set at a distance d stages away, the execution of

the conditional jump is stopped until the instruction setting the

condition code passes through L-d segments at a rate of um IT, if the

conditional jump is unsuccessful. However, if it is successful, then

the pipe is blocked until both the condition code is set and the target

instruction has been fetched from the memory. If t/6is set to be

the time interval between the recognition of a successful/unsuccessful

conditional jump and the time when the pipe can start execution again,

then

~t6 =max{(L-d*jIw l (2.8a)
e m~b Wm,b

e

After the jump has been determined, it takes a small amount of time

T/r to generate the operand request. It is not assumed that the

decoding is done beforehand as in some machines. Let 16be the

time interval from the recognition of a successful/unsuccessful

conditional jump to the time when the pipe starts making requests.

Then

4/6 wt616  T (2.9)
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After a dependent instruction has been encountered, there are

still f instruction prefetch requests in the pipe. The idle period

begins after these requests have been made to the memory. Let tb be

the time to make these remaining requests.
tb = 6 * 1 (2.10)

"m,b

The length of the idle period (Zp /6 ) is therefore the difference

between t T and tb-

-max { , .6 t b  (2.11)

The above analysis is true for a particular value of d. Let D

be the random variable denoting the distance, and D has the following

distribution
PT(D-=d) -,(Pd( d 1,., (2.12)

0o otheiz

This distribution is shown for the traces in Figure 2.13.

As a result of the degradation in memory utilization, there is a

degradation in the buffer utilization. During and idle period, requests

to the memory stop. At the end of the idle period, requests to the

memory begin again. In Figure 2.14, the decrease and the increase in

the number of requests in the buffer are shown. Since M may not be

an integer in our model (effective buffer length in Organization II),

a linear approximation is used in the original function. In terms of

the idle period, the time interval during which the buffers are not

full is y = 4416 + (M - M )*U where Me is the effective number in

the system. In fact, the shaded blocks in Figure 2.14 can be

rearranged so that the effective buffer utilization can be calculated.

Met during an Idle period In the two cases, Is
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if ' </ Mum~
Me 0 M if zp 16> M~b (2.13)

m, b

Using the statistics from the trace program, the results of the

estimated utilization are plotted together with the simulation results

in Figures 2.5 and 2.7. The degradation is quite significant andj

drops to about 50% of the original value in some cases. As seen in

4 Figure 2.5, the module utilization levels off much more rapidly with

increasing buffer size than the original results with no dependencies.

The curves plotted are not smooth because of the integrality require-

ment in the pipe length and the number of prefetched instructions. It

is further seen that increasing buffer sizes do not improve the

performance due to the effects of dependency. The difference in memory

utilization for b = 3 and b = 10 is very small as seen in Figure 2.7.

The estimations for waiting cycles are not plotted in Figures 2.6 and

2.8 because they coincide almost exactly with the simulation results.

In Figure 2.15, the buffer utilization for Organization I with an

I4WFMF algorithmn is plotted. It is seen that the buffer utilization is

almost constant for large values of m. It is also interesting to note

that the buffer utilization is lower for larger values of b. The

explanation for this is because for a large value of b, the waiting

time in the memory is longer and the memory utilization is higher.

This implies that a longer pipe must be used (Eq. 2.7). A longer pipe

means that it takes longer to resolve a dependent request and this

causes degradation in the buffer utilization.

The above estimations only give an average value for the

performance. In fact, if the memory can be utilized in some other way

(e.g., for peripheral processing) when a dependency occurs, the
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degradation may not be so significant. The above analysis also

reveals the fact that when the occurrences of dependent requests are

frequent, it is not beneficial to use a pipelined computer in a batch

mode. High degree of program interleaving using multiprogramming

would help in reducing the degradation due to dependencies.

2.9 Some Final Remarks about the Design of Interleaved Memories

We have presented in this section two organizations of an inter-

leaved memory system which utilizes a finite buffer space for the

storage of requests. We have designed a scheduling algorithm which

allows a finite set of requests to be processed in the minimum expected

time. However, the performance of our system is obviously le.s than

the performance of systems with an infinite saLurated request queue

which is an unrealistic assumption. In Figure 2.7. we have shown the

performance of Hellerman's model [HEL67] together with our simulation

results. Although Hellerman's model is a simple model and allows no

queueing of requests, it is useful as a lower bound for the performance

of other systems. It is seen that with a random request queue,

Hellerman's model is better than our Organization I with b = 0, but is

worse for b >0. Note that the performance curves all have the same

shape. Since Organization II degenerates into Organization I for b = 0,

it is worse than Hellerman's model for b a 0, but better for b >0. The

comparison with other models in the current literature is not meaningful

because they differ significantly.

We can improve our model slightly by considering the following.

The rationale behind the constraint that only one module may be

initiated in any sub-cycle is because the return bus can return at

5
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most one piece of datum in any sub-cycle. But since reads generate

return data while writes do not, we can initiate two or more modules

in a sub-cycle provided that exactly one of the requests is a read.

The improvement in utilization due to this is only about 2%. The

improvement is not significant because the fraction of writes in our

trace is less than 7% of all the accesses and its applicability is

also limited by memory interference.

The questions that still remain to be resolved are how can one

select between Organization I and Organization II and how does one

choose the parameters of the system in order to satisfy all the re-

quirements. In the hardware requirements, Organization I needs4 associative search capabilities in the buffers while Organization II

does not. However, the availability of fast associative memory can

help in this regard. The performance of Organization II predicted may

be worse because it may require the transfer of more than one request

into the memory system during a memory sub-cycle and it sometimes is

not possible in a pipelined system. Organization II gives a slightly

worse performance than Organization I when a maximum of one request

is allowed to be generated in each sub-cycle and the effective buffer

sizes in both organizations are identical. Tradeoff in cost and

performance must be made in the selection of the organization. In

order to answer the second question we have raised, we need to design

a cost model of the system. The cost of individual components is

highly technology dependent and will not be discussed here. However,

the designer can find a configuration with the minimum cost based on

the band width and the response time requirements. Assuming that the

bus width is determined and fixed, he can use the average utilization
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(a function of the degrees of interleaving) as an alternate measure

of bandwidth. The response time can also be normalized with respect

to the speed of the memory to give the waiting cycle. In the above

calculations, the effects of dependency are not considered; otherwise

Equations 2.6 and 2.9 can be used to find the values of utilization

and waiting cycle dependency. Using Little's Formula, the average

number of requests in the memory, or the average number in the request

buffers can be obtained. The designer can then substitute the values

for the average utilization and the buffer size into the formula

obtained by regression (Table 2.3) to get a polynomial equation as a

function of the degrees of interleaving and the memory speed. By

evaluating the speed for different possible degrees of interleaving,

the cost of the memory can be estimated. The final configuration

selected will be the one with the minimum cost.

3. Data Compression

With the increase in the amount of information processing, it is

important to keep the utilization of the memory high. The information

content of data stored in large alphanumeric data bases is usually low.

Further, as the processing becomes distributed, the commnunication

overhead of transferring data from one location to another is usually

substantial. In order to keep the utilization of the storage sub-

system high, and to keep the amount of data transferred over

comunication links low, data compression is a natural solution to the

problem. However, the use of compression codes which remove the

redundancy of data seems to be in direct conflict with the use of

redundant coding, e.g., parity check codes, which increase the
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reliability. What is needed then is an exploration of efficient error

limiting codes which can be applied to compressed data and an analysis

of the error rate of various compression schemes.

3.1 Desirable Properties of Compression Codes

In designing a compression code, it should possess to some degree

each of the following properties:

1) The technique should be reversible; i.e., the original data

should be fully recoverable from the compressed form. This

property can be relaxed in certain situations when the data

is repeated elsewhere; e.g., the keys in a directory structure

are usually repeated across levels.

2) The coding scheme should cause a measurable reduction in the

size of the stored data. In comparing compression codes, a

standard measure called percent compression is generally used.

percent [size of input data]
percen * _[size of output data] x10

compresion size of Input data]

3) The technique should be reasonably efficieht to implement.

4) The technique should be general enough to be equally

applicable to all alphnumerlc data files.

Two other properties which are often desireable in compression

schemes are:

5) The prefix property; i.e., no code is the prefix of another

code. This assures that the decoder never has to backup on

any portion of the text.
6) Lexicographic ordering property; i.e., if the input data is

in a sorted order, than after encoding, the output data is

still in sorted order. This property is useful for indexes.
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Existing compression techniques, which posses part of all of the

above properties, can be classified into the following board categor-

ies: (1) run length encoding; (2) differencing; (3) statistical

encoding; (4) value set schemes.

Run Length Encoding - In a data base, there are frequent

occurrences in which the data occur in a continuous sequence of

identical characters; e.g., sequence of zeroes. This sequence can be

replaced by the character followed by a count. Run length encoding is

a technique by which a string of continuous characters or a "clump"

are replaced by a repeat flag for the character followed by the size

of the "clump" or run length. In practice, however, since very long

clumps are highly improbable, one can limit the run length encoded

and combine the flag and length in a single byte. This is the technique

used in WYLBUR [FAJ73]. Run length encoding of a single haracter type

is potentially the most successful, with diminishing returns for more

characters. Huang has discovered an upper bound for the entropy of

run length encoding [HUA74].

Differencing - Differencing refers to techniques which compare

a current record to a pattern record and retain only the differences

between them. It is particularly successful with large files of

records with fixed alphanumeric fields where most corresponding fields

are the same or are blanks and zeroes. This is the approach normally
used for sequential files, where the pattern record is taken by the

previous record in the file. When differencing is applied to direct

access files, however, the first record of each block is left

uncompressed and used as a pattern for the remaining records in the

block. The unit of information on which differencing is performed can
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be the bit, the byte, the field or some logical data in the record.

Byte-level differencing is the most common case since byte access is

convenient and cheap. In field-level differencing, bit maps are often

used to indicate the presence or absence of a field when identical to

the previous. Two examples of the use of differencing in relational

data base systems are Titman's experimental system and the Peterless

Relational Test Vehicle [TOD76].

Statistical Encoding - Statistical encoding is a transformation

of an input alphabet so that it is assigned a code bit string whose

length is inversely proportional to the frequency of its occurrences in

the text. Since different characters occur with different frequencies,

a statistical encoding scheme will usually compress the text. Huffman

coding scheme is an optimum, elegant and simple algorithm to assign

variable length bit codes with the prefix property to characters, given

their frequencies of occurrence in a text. There are other techniques

such as the Hu-Tucker Algorithm, which has both the prefix and the lexi-

cographic ordering property. The major drawbacks of statistical encoding

are that it does not exploit the natural radix of the computer (e.g.,

byte, word, etc.), and it does not take into account some special

characteristics of the data; e.g., strings of repeating characters, and

the distinction between numeric and character data. A solution to this

is the use of fixed length encoding which manipulates data in units of

byte [SCH71]. Further, the fact that the size of each character is

variable also causes problems when the data are modified and the

reliability of the data is difficult to assure because the character

stream would not be recognizable once a bit is destroyed.
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Value Set Schemes - A value set scheme in a data base system is a

coding scheme in which repeated storage of data elements in their full

character representation is avoided. Instead, each data element is

stored once in the system and all subsequent occurrences of the same

data element are referred to the first stored occurrence. An example of

this technique is shown in the MacAIMs Data Management (MADAM) System in

which a reference number is assigned to a new entering data element and

all subsequent operations on the data element use the reference number.

However, the fact that reference numbers are unique only within a

relation could lead to problems in the reliability of the data management

system and the integrity of the data. The MADAM System also uses a

binary tree scheme for maintaining reference numbers which is inefficient

for insertion and costly in storage space for large sets of data. There

are other schemes which represent a better tradeoff between storage

efficiency and processing efficiency [KNU73].

The decision of which code to use is highly dependent on the

applications. For example, in a data base where the order of data is

not important, the lexicographic ordering property is O-ot important. The

required properties of the applications must therefore be identified by

the designers before the code is selected.

3.2 Future Directions of Research

While there are many reported results on data compression, the

future directions of research are seen to be concentrated in the follow-

ing areas:

Identify and characterize data redundancy - In a data base, there

are many levels of data. For example, there are the file level, the
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record level, the field level and the byte level. The type of data

redundancy at each level must be identified. This would aid in selecting

data compression schemes best suited to the particular type of redundancy.

Further, it leads us to the possibility of multi-level compression schemes,

wherein data is compressed through a set of cascaded stages. Each level

of the data is possibly compressed using a different technique. The

compression code must be selected so that it minimizes the effects on

other levels of the data.

Develop a comparison model for various compression schemes - The

comparison model must be able to measure the amount of storage reduction

* and the computation cost for encoding and decoding. A simple measure is

the percent compression defined earlier. The computation cost can be

broken down into the CPU cost, the memory usage cost and the input/output

cost. In order to calculate the storage reduction for a given compression

scheme, the number of encodable units of tokens in a reocrd or file must

be predicted. This can be obtained from an assumed input distribution

such as uniform distribution, normal distribution or Zipf's distribution

at the given level of data.

Study adaptive Huffman coding techniques which respond to update

* activity - As the data base gets updated, the initial Huffman code

assignment based on the a priori character frequency distribution may no

longer be optimal. A threshold for the expected compression ratio has to

be determined which can dynamically reassign the variable length codes

for the new frequency distribution. Further, the threshold selected

should not cause excessive re-coding. The problem of updates which change

the size of the data, and the reliability problems should also be studied.
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Invstiatethe feasibility of implementing, in a microprocessor,

a simple self-measuring self-adjusting encoder/decoder - Experience has

shown that the current implementation of data base systems are I/O bound

within a node and communication bound on the DCS. A microprocessor

encoder/decoder, by performing compression and decompression, would cause

communications to be done more efficiently, at the same time distributing

or relieving this function from the processor sub-systems. Such a device

would performn the following functions: (a) encode and decode data; (b)

* .1 measure and adjust the code assignments; (c) detect errors and automatic-

ally re-initiate the operation; and (d) control concurrent accesses. The

advantage of this design is that it would make data compression trans-

parent to the rest of the system.

In conclusion, the use of data compression allows data to be

stored more efficiently and data communication to be done with shorter

messages. However, many issues relating to the feasibility, the design

of coding techniques, the reliability of the resultant codes, the

implementation issues,etc., must be solved. It is contended that such

solutions do not exist now and future study is necessary.

4. Sumr

In this report, we have discussed the design of interleaved

memory system. We present two different implementation alternatives of

interleaved memories (Organization I and Organization 11). The two

organizations differ in the configurations of the request buffers. In

Organization 1, a single set of request buffers is assumed to be shared

by all the modules and in Organization II, individual request buffers

exist for each module.
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The center of the control in the memory system is the intelligent

scheduler. The scheduler, using a scheduling algorithm, decides at the

beginning of each memory sub-cycle whether to initiate a memory module

and, if so, which module to initiate. The selection of which module to

initiate is determined by the information about the requests in the

associative buffers and by the knowledge about the status of the modules

(free or busy). Three scheduling algorithms are investigated in this

design.

In data compression, the existing techniques have been classified

into four areas: run length encoding, differencing, statistical encod-

ing and value set schemes. A multi-level compression scheme is proposed

so that data is compressed through a set of cascaded stages.
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